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Kharkov, Ukrarne, USSR 
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Abstract. A new ap.xonrmate method for studying directed percolation I" plane crystals 
IS presented 6 y  applying the method the percolation threshold and somc satisticai 
characterirtres of the in6nite dwter  m a plaae crystal with a quadratic lattice are found. 
-. /n< resuits obtalneri ere r.en6rd by the Monie Cario method 

1. Introduction 

The rigorous investigation of the percolation process leads to rather difficult mathemati- 
cal problems. mere are some well-known approximate methods of solving these 
problems, e.g. numerical modelling, series expansions and the renonnalization method 
[1-3]. The percolatiou threshold was found rigorousiy only for some specific cases of 
plane lattices. 

Some applied problems, e.g. the motion of a charged particle in a medium under 
the action of a strong electrical field, or the stochastic process in the lattice which 
occurs at &Crete time intervals, etc., iesd to the problems of directed percol, :on [4] 
In this paper vie consider the follo-Xing directed percolation process in a plane crystal 

It is supposed that the percolation through each open site is possible only in three 
directions, let us say 'up', 'left' and 'right'. The fourth direction, 'down', is forbidden. 
To simplify the investsgation, we suppose that the probability of the given site being 
open does not depend on the state of other sites (open or closed). The concentrations 
of open and closed sites are denoted, respectively, by p and q ( q  = 1 -PI.  

We shall use an approximate model of $he process. This model can be treated quite 
rigorously. It enables m e  to derive some characteristics of an infinite cluster and Jeeds 
IO the Tather unexpected conclusion that, contrary to widely accepted con-iiction, the 
transition between the percolation state and the non-percolation one is a phase 
transition of the first order. It is not inconceivable that this may be erroneous because 
of the choice of the mathematical model we have made. The comparison by the Monte 
Carlo method between our inqdel and the classical one shows that the divergence in 
the data obtained grows as the concentration of open sites approaches the percolation 
threshoId. Nevertheless, the existence of a rather realistic model, IO which the phase 
transition is of first order, seems to he of some interest. 

with a qw&ai,e lattice. Ea& si& of ihf: cry&i Is open or cio& for petcoiation. 

2. The model empbpd aled ~ o ~ ~ ~ a ; i o =  of the ~~$~~~~~~~~~ problem 

In order to formulare the difference between the above-menrioned model of dirzcted 
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percolation and the simplified model actually investigated, ':"e need to introduce some 
stochastic characteristics of the percolation process. 

Let us enumerate the layers of the crystal in a natural way, so that the boundary 
layer is numbered as one. The set of neighbouring sites in the same layer makes an 
open group if they all are open, while the two boundary sites are closed. We shall call 
211 open groups in the first layer active. A group in the (k+  1)th layer wiU be called 
active if in the kth layer at least one of the sites lying immediately under the group 
belongs to an acrive group. A set of all the sites belonging IO active groups forms a 
directed cluster, which is the main object of Our investigation. 

Two active groups in the same layer are considered to be neighbours if between 
themthere are no other active groups. The set of sites between two neighbouring active 
groups will be called a passive group. The passi-;e (zctive) group length is defined by 
the number of sites belonging to it. Let p&s) and q k ( s )  be the concentrations of active 
and passive groups of length s in the ktk !ayet. Thus, p,(s) is the probability for a 
given site in lhe kth layer to he the ieft site of an active group of length s. 

The concenwations of active and passive sites in the kth layer are, respective!y, 
equal to 

G Ya Lyubarjky and S V Krikun 

The percolation is pressnt if the limit C = Emk.,- C, is positive, and is absent if it 
equals zero. 

The functions p, (s )  and q k ( s )  do not provide 2 complete statistical description of 
the kth layer, because knowledge of these functions is insufficimt to calculate the 
probability of encountering the complex consisting of n active groups of lengths 
s,, s2,. . . , s, with (n - 1 )  passive groups of lengths U,, rr,, . . . , U"-* between them. A 
complete statisecat description of the first layer can be obtained rather ezsily. But the 
problem of finding a complete statistical description for the (ki 0 t h  layer, when such 
a description for the kth layer is known, leads to an infinite set of linear equations, 
and the procedure of writing down this ret is rather complicated. 

GzL 0 0.5 G.6 0.1 0.8 0.7 

P 

Figure 1. The c o n ~ ~ n t r a t i ~ n  C of~itesbelong~ngtoLhetnfiiiiieciusieraga~nst thecoacentra. 
tioil P of open sites: Fuii cuno, the present theory, crosses, the mean cancentiatm values 
& a i &  by a IO-fo!d madelling Cor each value of p. 
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To avoid these difficulties, let us consider an approximate model, where there are 
no correlations between the lengths of neighbouring active and passive groups. We 
were at first not sure whether such a model would give reasonably good results. To 
find out how far one may depend on these results, an independent investigation was 
made using the Monte Carlo method. The Mcnte Carlo process was repeated 10 times 
for each value of the parameter p. For p = 0 63+0.01n ( n  = 0,1, .  . . , 6 )  the lattice was 
chosen to have 2000 x 2000 sites, for p = 0.7 t 0.0511 ( n  = 0,1,2,3,4) we took the lattice 
with lO0Ox 1000 sites. The root mean square spread in the concentration C did not 
exceed 0.02 except for the concentration p = 0.63, where the spread is equai to 0~35. 
The results obtained are shown in figure 1. Thus we got the necessary encouragement 
IO proceed with the investigation of the model. 

The percolation problem in the frame of this model may be formulated as a problem 
of finding the values of pk(s), q r ( s )  (k, s = 1.2,. . .) and their limits p ( s )  = limp,(s) 
and q(s)=lim qk(s)  (k+m).  

3. Fundamental re8atiooos 

The assumption that the lengths of neighbouring active and passive groups do rot 
correlate with each other permits one to evaluate pk(s) 2nd q d s ) ,  pzovided that pk-,(u) 
and qh- i (u)  (U = 1,2,. . .) are known. A similar evaluation is made ic the mean field 
theory in a much simpier case, where the layer state is specified by the concenrrarion 
of active sites only [4]. No correlations are taken into account in this theory. 

The formulae expiessing pk+,(s) and qn+,(s) in terms of p x ( u )  2nd %(U) ( U =  

1,2 , .  . .) are very cumbersome and are not fit for computing. One gets much simpler 
relations using the generating functions 

where 

Trli(S)=R;'ph(S) x ~ ( ~ ) = R l ' q l i ( ~ )  (3) 

and 

m m 

Rk- E Pk(s)= z q d s ) .  (4) 
I=! r=1 

The physical meaning of these quantities is obvious. RI is the probahility for a 
random site in the kth layer to be the very left site of some active group no matter 
how long it is. Let Ur be the set of all such sites. Then w h ( s )  is the probability for a 
random site from the set U, to belong to an active group of length s. The conditional 
probdbility x k ( s )  has a similar meaning. 

The recurrence fonnulae for the generating functions can be written as (see the 
appendix) 
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where 

G Ya Lyubarsky and S V Knkun 

(10) 

To these two iundamental relations we shall add the following three equalities. 

%JO] = Tr,'[O] = 0 

xr[lj= wk[l]= 1 (11)  

R,(.rrt91+xLIlI) = 1. 

They immediately follow iron the definitions (2)-(4). 

4. The step-by-step casdation of sbochcstie c:mracte&ties a: the layem 

Relations ( 5 )  and (10) permit the step-by-step calmlatian of the charac:cyistics p.(s) 
andq,(s) ( k = 2 , 3  ,... ; s = l , 2  ,... ) . Indead , fa ik=l  weobvionslyhave 

Pl ( s )=  q2p= q , ( s )  =p1q: (12) 

For the second step we use the series expansions in powers of z of the fundamelltal 
relations and equate the corresponding coefficients. In this way we get relatively simple 
expressions for pdsj and qi (s ) ,  which permit us to make a step-by-step evaluation of 
p.(s),qL(s) (s=1,2,  ...) if thevaluesof p L - , ( u ) ,  qi-,(o) (a=1,2, ..) a r e k n o v a l n  
this manner we evaluated pn(s) ,  qr - (s )  for all s== N (N=l00-1000). The functions 
px(sJ and qklr(s) with s> N were approximated by zero. When the concentration of all 
active sites C, hecanie constant up to 

It iurued out lhzt the necessary numher of sreps in this scheme rapidly grew as the 
concentration p approached the percolation threshold. This prevezts one from finding 
in this way the va!ues of the limiting concentratiuns p ( s )  and q(s )  when p -pc<0.02 
(.D, being tke threshold concenrration). 

the computing process was stopped. 
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Figuse 2. The concelrtration af active atoms sr a function of  the number of the layer for 
some p-valuer The brcke:i Ims Show the Iheoretizal percolation threshold The concentra- 
tion p = e,. 

The C, values as functions of the layer nuaber for several concentration p-values 
are shown in figure 2. It is easily seen that if the difference between the concentration 
p and the threshold p. is large enough, then the C, values reach their limits rather 
rapidly (in the frame of the approximate model considered, p,=0.65277i10-5, as is 
shown in section 6). However, in the vicinity or thresho!d it is rather difficult to iind 
these limiting values because of the growing role oi the passive groups with large 
lengths and the slowed down rate of approaching to the carresponding limits. 

5. "he limiting c o n ~ ~ i t r a t i ~ n  values 

Itispossibieto provetbeexistenceofthehmitsofR,;p,(s), qk(s) ,  ~ ~ ( s ) , x ~ { s )  ( k - m )  
if the percolation is present. 'The proof is based on the relations (5) and (10). Thus. 
far enough from the crystal boundary &e statistical characterisi~s of the lay* -1s cease 
to change. It IS of interest to calculate the limiting values of these characteristics. 
However, the evaluation of the limiting concentration values by means of the step-by- 
step procedure takes too much computer time and becomes practically impossible 
when the concentration p approaches its threshold  value^ It is more ccnvenient to 
make use of the obvious property of the limiting concentrations to he a fixed point 
under the transformations ( 5 )  and (10). 

Let us denote the limit of each quantity with an index k by the same symbol bat 
without the index. Then the fundamental relations ( 5 )  and (10) yield 

D[z]x[z]*+ E [ Z ] X [ = ] + F [ Z ~  = U  (13) 
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From ( l i )  we get 

x[O]=7r[Oj=O 

. [ I ] =  m[17=1 

R(7r'[ I]+ x ' [  11) = 1. 

tions (13) and (14) there are thre In ri unknown parameters: ~ ' [ l ] ,  x ' [ p ]  and 
x [ p ] .  However, there exist two relations between these parameters: 

To obtain the first relation, it ia sufficient to put z =  1 in (14) To denve the second 
relation, one should difierentiate expression (14), put z =  1 and use the first relation 
of (26) 

Thus, the above-mentioned three parameters depend only on one independent 
parameter,e.g. n[pj. The othertwoparameters maybeeasilyexpressedin terms o f x [ p ] .  

Relations (13) and (14) permit one to express w ( s )  and x ( s )  (s = 1,2,. . .) in terms 
of x [ p ]  and x ( m )  (m=1,2,  ..., s-1). Thus, should ~ [ p ]  be known, it would be 
possihie to find all the values of x(s)  and x ( s ) .  Actually, the evaluation of w(s)  and 
x ( s )  (s= 1,2, . .) can be made in the fallowing way. 

The obvious inequality 

a=i f. r ( n ) p " s n [ p ] s  a-, i x ( a ) p * + p +  * = I  2 4 ) )  (17) 

together with the conditions ~ ( s )  2 0, x ( s J  2 0 (s = 1,2, . . .) permits us to check each 
trial value of x [  p ]  and tbns to calculate it to an aivitrary precision. To make the error 
less than lo-', it is snfficient to take ?he parameter s in inequality (17) in the range 
20G s e 3 0  (for diserent p-values) This being accomplished, it is easy to find the ~ ( s )  
and x ( s )  values for as many values of s as is necessary. 

To find the piobabiiities p ( s )  = R7r(s) and q ( s )  = R d s ) ,  one needs to knnvi the 
R-value. This can be found by means ofthe third relation~from set (15). To find x'[I], 
which is involved in this relation, one may use relation (13) 

where x[z]=(:-&)2~[r1; x [ z I = E [ z ] 2 - 4 D [ ~ 3 F [ ~ ] ,  il IS the zero of the function 
x[z] of second multiplicity. The sign before the radical is letermrned by the condition 
x[Ol=O. As EL01 < O ,  the sign in formula (1s) is a plus. .After differentiating (18) and 
put?ing z = I we get a slnpie expression for . ' [ I ]  in ierms of x [ p ]  and 7r[qj. For these 
quan:ities there exist fast converging series (2). 

A less sophisticated way of evaluating x'[13 by using the series 
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requires a much greater number of %(s) values to be computed, if good accuracy is 
necessary. 

6. Tke perfohtion tRresBsold 

For the model considered there exists a rather simple algonthm to evaluate the 
percolation threshold. 

By definition (2), the functions 4 2 1  and x[z] are analytical in the circle Irlsl, 
and the coefficients of their Maclaunn series are all positive. Therefore the functions 
E [ z ] ,  x [ z ]  and D [ z ]  are analytical in the circle I z / s r  ( r = q - ' > l ) .  Relation (18) 
shows that the nearest singular point of the function x [ z ] ,  say zo, is the branch point 
and is simultaneously the zero of odd multiplicity of the function ~ [ z ] .  By Pringsheim's 
rhecrem, the point za lies on the positive semiaxis of the complex =-plane. 

Let rhe p-value become less than the critical value. Then either so becomes less 
than unity, or some of the coeEicients ?i(s), ~ ( s )  become negative. In the last case we 
shall say that the positivity condition is violated. 

Let us consider the first possibWy. If the point zo = 1 is a simple zero of the function 
~[z], then the derivative x'[l] tends to infinity as the concentration p approaches the 
critical value. In all other cases, it has a finite limit ~'[lj. !Ahat is the physical meaning 
of thesp. two cases? From equalities (11, (2) and (3) one may deduce the simple relation 

According to relation (16), the r Z i 1  value is bounded to a!! 4 2  E (z>O). Therefore, 
x'[ll-~oO means that C +O, i.e. the concentration of active Sites tends to zero when 
the parameter p rends to the percolation threshold. If the point z,= 1 is a non-simple 
zero of odd muitipiicity of the function x[zj, inen the concentration C tends to the 
positive limit. la the first case, the transition from~ a percolation re; mime to a non- 
percolation one is the second-order phase transrtion, and in the second case it is of 
the Brsr order. 

In the model considered, the point z = 1 is a zero of the function x [ z ]  for all values 
of p. The multiplicity of this zero is no less than two. This excludes the first case, and 
thus excludes the possibility of the second-order phase transition. 

The threshold values OF the concenualion p may be czlculated from the condition 
that the multiplicity of the point z = 1 as zero of the function ~ [ z ]  is no less than three, 
i.e. from the condition x"[1 J = 0. The algorithm of the przvious section permits us to 
calculate the x [ p ]  values for different values of p and thus to represent ~"[l] as a 
function of the parameter p only. The zero of this faxtion lies in the interval 
pc = 0.652 77 * ia-', the uncertainty $D = i O-' is due to the unceeainty of the parameter 

The zero of$[ 11 is the percolation threshold if the pmitivity condition is fulfilled. 
This condition has been verified in the process of determining the value of x [ p l  The 
violation of the positivity co.idition pointed to inaccuracy of the trial value of x [ P ] .  
With each such step the number of positive coefficients ~ ( s )  and x ( s )  grew, and it 
seems that this number can be made as large as one wishes, if :he choice of the x [ p l  
value i s  good zuough. This shows thAt the positivity condition is weaker than the 
condition ~"[l] =O. Thus the threshold value is determined by the condition x"lll=O. 

K[Pj. 
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7. ComPClusiQn 

The method of solving the directed percola?ion problem presented in this paper shows 
good agreement with Monte Cerlo calculations, except for a small region near the 
percolation threshold. No essential diffculties seem to appear in applying the method 
to other directed percolation problenis in plane crystals. 

This paper contains an algorithm for step-by-step calculation of the concentrations 
pt!s) and qr(s) in each layer. Theie are also algorithms for evaluation of the limit@ 
concentrations p ( s )  and q ( s ) ,  and also of the percolation threshold 

It is shown that in the frame of the approximate model considered the transition 
through the percolation threshold is a phase transition of thc first order. However, we 
cannot be sure that this is the properiy of the real plane crystal and not a mere 
consequence of the approximation we have made to constnx: the model considered 
'The comparison with the data obtained by the Monte Carlo method shows (figure 1 )  
that if !n real crystals the discontinulty of concentrations does exist. it IS smaller than 
that obtained above 

It may be noted that a mare complicated case, where correlation ex~srs in the 
positions of open and closed sites, can he investigated along the same lines if the sites 
In question are neighbours and belong to the same layer. 

Ci Ya Lyubarskv and S VKrikran 
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Appendix 

Here we gwe our methoa of reasoning thnt ha? led :a relations (51 and (IO). 
Let us take a random set M of s sites in the (k+l ) th  layer and calculate the 

probability of its being a passive group. 
We denote the two extieme sites cf M by A- and A+ (A- being the left site). The 

two sites in the kth layer lying immediately Ender A- and A, are designated as s:les 
A- and A,. We denote the left nelghbour of the site 4- by B-, and tne right neighbour 
of A, by B,. Let M- be a grorp (ac:ive or passive) containing the site 5-, and M+ 
a group containiwg the site B+. Taking in;d account that the groups A h  and M+ may 
be active or pas7ive and may or may not be identical, we get six diEerent cases For 
our purpose. it is sufficient tn treat only one of these cases. We choose the Lase whers 
the group R.I- is a_ctive and the ginup lil, is pzssive. Le! 3: be the number ofgro~ps 
lying bstween M- and A L ,  and I , ,  I:, . . . , /", be the lengths of these groups. In the 
case considered, the possrble values of m are even non-negative numbers (including 
zero). 

Let a- (B-1 be thc number of the sltes belonging to the set M end lying to [he left 
(right) of the site B-,  let a+ (P+)  be the number of the sites of the set M+ lying to 
the right (!eft) of the site 8,. The set of numbers 

ia-.P-. a+, P + ,  m, 4 %  12, . . , L,f  (A:) 
gsves 2 complete dliscription of the relevant part of the kih layer. The probability io 
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meet just ?he configuration (Al)  in the 8th layer is equal to 
Rtrrx(a -+ l + P ~ ) x ~ ( l , ) r r , f l * )  ... r r~( l , )x r (p++I+n+) .  

??le set M is a passive group if and only if the following five conditions are fulfilled: 
(i) All sites of M lying above active groups are closed. The probability of this 

event is equal to qa-+'z+ +'*W. 

(ii) The left neighbour of the site A- belongs to an active group. The probability 
of this event is p.  
(V) The right neighbour of the site A, belongs t c  an active group. The respective 

probability is equal to 
(iv) The site A- must be closed. The probability of this evenr is equal to 

provided the Crsi condition is iuiiiiied. 
(v) The site A, rmst be closed. The csorresponding probability is equal to 

ifP,=O, or s = l  
i f@+>O 

provided conditions (1) and (iv) are fulfilled. 
Using Kronecker's symbol 

we may represent the probabilities w- and w+ in the form 
w_ = 1 -p& 

w+= 1 -p(1 -&)(l -als) = 1  - p ( l  -SoB+)+pS1,(l -Sop+) 

Now we can write down the contribution w ( s )  ofall configurations ofthe considered 
type to the prob~hilitv qktlis): 

w ( s )  = &m(u_+l  +@-)?~,~(l , )n;~(/2)  ?rx ( l , )x i (P*+  1 +n+) 
u-,o,=o m,p.,3*. 

I,,'%. .J.. 

xqs.+i,+r,+ +S. p=-+'(i -P~~, . ) [ I  -PO -.60p~)(i - 6 , ~  (A2) 
(the inner sum IS extended io the region: m = O , 2 , 4  ,... ; p-,p+=O, 1 ,... ; 

Now rhe calculztion of the generating function w[z]=X:=, zsw(s )  i s  a rather 
I , .  12,. . . , l, = 1.2.. .'. ; p-+p++ l , + / , + .  . . + I ,  = s). 

straightfonvard operation because of the evident su'n rule 

(m is even). Tc use this rule, we extend formally the relation (A2) to the value s = 0, 

and write 
m m 

w [ z ] =  2: z ~ 1 v ( s ) = - w ( O ) i  c z ~ w ( s )  
I=, s=" 
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The sum over /?, . . . , l ,  is equal to (wk[qz]i"", the sum uver i,, . . , 
(xk[z]}"". After summing over m we get 

1 

is equal io 

1 - x k [ ~ l w k [ q z l '  

The remaining three sums are readily found: 
m 

1 p=+ x %,*(a-+ 2 +P-)xdP++I + r r + ) y ~ - ( l  - p S o p d I  -s*@*) 

= q  1 P " ' ? i h ( n ~ ' 1 ) ~ k ( c r + + 2 ) = q ( x , ~ p l - x i ( l ) P ) / P 2  

L , P + l "  fi.+p,=i 

m 

0-..+-0 

In the same way one can consider each of the remaining Eve cases arrd thus get 
relation ( 5 ) .  
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The derivation of the second fundamental relation (10) does not take much time. 
Indeed. the necessary and sufficient set of conditions for the set M in the (k+ l ) th  
lajer to be active is the fallowmg: 

( i )  All sites, belonging to M, are open and border on two closed sites. The 
probability of this event is psq2.  

(ii) In the kth layer there is no passive group containing all sites lying under the 
set M The probability of this event is 

Thus 

This relat?on readily leads to the second fundamental equation. 
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