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Abstract. A new approxsmate method for studying directed percolation mn plane crystals
1s presented By applying the method the percolation thresbold and some stotistical
charactenstics of the mfinste cluster m a plane crystal with a quadratic lattice are found.
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1. Introduction

The rigorous investigation of the percolation process leads to rather difficult mathemati-
cal problems. There are some well-known approximaie methods of sclving these
problems, e.g. numerical modelling, series expansions ang the renormalization method
[1-3]. The percolation threshold was found rigorously only for some specific cases of
plane lzitices.

Some applied problems, e.g. the motion of a charged particle in a2 medium vnder
the action of a strong elecirical field, or the stochastic process in the latiice which
occurs at discrete time intervals, etc., lead to the problems of directed percol. ‘on [4]
In this paper we consider the following directed percolation process in a plane crystal
with a quadratic lattice. Each site of the crystal 1s either open or closed for percolation.
It is supposed that the percolation throvgh each open site is possible only in three
directions, let us say ‘ap’, left” and ‘right”. The fourth direction, *down’, is forbidden.
To simplify the investigation, we suppose that the probability of the given site being
open does not depend on the state of other siies {open or closed). The concentrations
of open and closed sites are denoted, respectively, by p and g (g=1-p).

We shall use an approximate model of the process. This model can be treated quite
rigorously. It enables one to derive some characteristics of an infinite cluster and leads
10 the tather unexpected conclusion that, contrary to widely accepted conviction, the
transition beiween the percolation state and the non-percolation one is a phase
transition of the first order. It is not inconcervable that this may be erroneous because
of the choice of the mathematical model we have made. The comparison by the Monte
Carlo method between our madel and the classical one shows that the divergence in
the data obtained grows as the concentration of open sites approaches the percolation
threshoid. Nevertheless, the existence of a rather realistic model, in which the phase
transition is of first order, seems to be of scme interest.

2. The model coployed and formulaiion of the mathematical problem
In order to formulate the difference between the above-mentioned model of direcied
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percolation and the simplified model actually investigaied, *ve need to introduce some
stochastic characteristics of the percolaiton process.

Let us enumerate the layers of the crystal in a natural way, so that the boundary
layer is aumbered as one. The set of neighbouring sites in the same layer makes an
open group if they all are open, while the two boundary sites are closed. We shall call
all open groups in the first layer active. A group in the (k+1th layer will be called
active if in the kth layer at least one of the siies lying immediately under the group
belongs to an active group. A sst of all the sites belonging to active groups forms a
directed cluster, which is the main object of our investigation.

Two active groups in the same layer are considered to be neighbours if betwsen
them there are no other active groups. The set of sites between two neighbouring active
groups will be called a passive group. The passive (active) group length is defined by
the number of sites belonging to 1t. Let p.{s) and g.(s) be the concentrations of aciive
and passive groups of length s in the kth layer. Thus, p.(s} is the probability for a
given site in the kth iayver to be the ieft site of an active group of length s

The concentrations of active and passive sites i the Ath layer are, respectively,
equal to

o0 [~=)
G = Z} sPi(5) I-G= EI sqi(s). (1)
The percolation is pressnt if the Hmnit € =lim,., C; 15 positive, and is abgent if it
equals zero.

The functions p.(s) and gi{s) do not provide 2 complete statistical description of
the kth layer, because knowledge of these functions is insufiicient to calculate the
probability of encountering the complex consisting of »# active groups of lengths
81,y 82y .., 8, with {® — 1) passive groups of lengths o, 03, ..., ¢._; between them. A
complete statistical description of the first layer can be obtained rather easily. But the
preblem of finding a complete statistical description for the (k-+ 1)th layer, when such
a description for the kth layer is known, leads to an infinite set of linear equations,
and the procedure of writing down this set is rather complicated.
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Figure 1, The concentration C of sites belonging to the mfinite cluster agatnst the concentra-
uoz p of open sites: Fuii cunve, the present theory, crosses, the mean concentration values
obtained by a 10-fold madelling for each vaive of p.
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To avoid these difficukiies, let us consider an approximate model, where there are
no correlations between ihe lengths of neighbouring active and passive groups. We
were at first not sure whether such a model would give reasonably good results. To
find out how far one may depend on these results, an independent investigation was
made using the Monte Carlo method. The Mcnte Carlo process was repeated 10 times
for each value of the parameter p. For p=063-+0.01n (n=0,1,...,6) the lattice was
chosen to have 2000 x 2000 sites, for p=0.7+0.05n (n =0, 1, 2, 3, 4) we took the lattice
with 1000x 1000 sites. The root mean square spread in the concentration C did not
exceed (.02 except for the concentration p=0.63, where the spread is equal to 0.05,
The results obtained are shown 1n figure 1. Thus we got the necessary encouragement
to proceed with the investigation of the model.

The percolaiion problem in the frame of this model may be formulated as a problem
of finding the vatues of p.(s}, q.(s) (k,s=1,2,...) and their limits p(s}=1lim p.(s)
and g(s)=lim q,(s) {k—>c0).

3. Fundamenial reiations

The assumption that the lengths of neighbouring active and passive groups do rot
correlate with each other permits one to evaluate p () and g;(s), provided that pr. (o)
and g,_,{o) (=1,2,...} are known. A similar evaluation is made ir the mean feld
theory in a much simpler case, where the layer staie 15 specified by ihe concentraiion
of active sites only [4]. No correlations are taken into account in this theory.

The formulae expiessing pr.(s) and g;..(s) in terms of p. (o) and g.lo) (o=
1,2,...) are very cumbersome and are not fit for computing. One gets much simpler
relations using the generating functions

mle]= L m)s  alds T ab) @
where

wm(sV=R;' p.(5) (5} = R g(5) (3)
and

Re= )= T auls) (4)

The physical meaning of these quantities is obvious. R is the probability for a
random site in the kth layer to be the very left site of some active group no matier
how long it is. Let U, be the set of all such sites. Then w,(s) is the probability for a
random site from the set U/, to belong to an active group of length s. The conditional
probability {5} has a similar meaning,

The recurrence formulae for the generating functions can be written as (see the
appendix)

Ri

Torlaiaiep Al Allsmlae) + Al mdgelald+ AdzD)

(5)

2] =
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where
__pgz(qtap) 6
A G- ©
1....
Ad1=p( 2 a1 2 2)) ™
—gz Pz
* r71_,2_{_2z{q+pz) e Z _ 72.' r,krrl':_i\
AN =) G—gf (1-g2) "
_palplz(l-2) x»[,DJZ(Z(Hp)—Z.D)) (8)
(p—1z) {(p—zy
TR NS T prilplz(1-2)
Afzl=p Q[l_qu’”k[u 1) (1-—qz}2+ p-z
Lzl pl (2p(l -z) 42 )} )
p-z \ 1-gz p-z
and
x 2
g ofmxidl] pz (l—xkipz}))
PH;[Z}—}_PZ Ry (1‘W (1_1):)2 . £10)

To these two fundamental relations we shail add the following three equalities.
3 [0] = m [0]=0
wm[ij=m[1}=1 (i1}
Rlmilil+wi{i]}=1.

They immediateiy foeliow from the definitions (2)-{(3).

4, The siep-by-stey calculation of stechastic characteristics of the layers

Relations (5} and (i0) permit the step-by-step calculation of the characieristics p.(s)
and g, {s) {k=2,3,...; 5=1,2,...). Indead, for k=1 we obviously have

pis)=g"p° q.(s)=p’g". (12)

For the second step we use the series expansions in powers of z of the fundamental
refations and equate the corresponding coefficients. In this way we get relatively simple
expressions for p.(s} and g (s), which permit us to make a siep-by-siep evaluation of
Pl5), g {5y {5 =1,2,.. ) 1f the values of pi{o), g (o) (e =1,2, ..} are known. In
this manner we evaluated p,(s), g.{s) for all s<<N (N =100-1000). The functions
Pl and g, (s} with s > NV were approximated by zero. When the concentration of ait
active sites (), became constant up to 107°, the compuiing process was stopped.

it turned cut that the necessary number of steps in this scheme rapidly grew as the
concentration p approached the percolation threshold. This prevents one from finding
i_n thus way the values of the limiing concentrations p(s) and ¢{s) when p —p,<0.02
{ pc bemng (ke threshold concentration).
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Figure 2. The concentration of active atoms a» 2 function of the aumber of the fayer for
some p-values The broken haoe shows the theorenical percolation threshold The concentra-
tien p=Cj.

The C, values as functions of the layer number for several concentration p-values
are shown in figure 2. Bt is easily seen that if the difference between the concentraiion
p and the threshold p, is large enough, then the &, values reach their limits rather
rapidly {in the frame of (he approximate model considered, p,=0.65277+107°, as is
shown in seciion 6). However, in the vicinity of threshold it is rather difficult to find
thess limiting values because of the growing role of the passive groups with large
lengths and the slowed down rate of approaching to the corresponding limits.

5. The Hmiting conceniration values

It is possible to prove the existence of the limats of By, p (5}, g.(5), (5}, %, {5} (k> )
if the percolation is present. ‘The proof is based on the relations {5) and (10). Thus.
far enough from the crystal boundary the statistical characterisiics of the layers cease
to change. It 15 of interest to calculate the limiting values of these characieristics.
However, the evaluation of the Hmiting concentration values by means of the step-by-
step procedure takes too much computer timae and becomes practically impossibie
when the concentration p approaches iis threshold value- It is more ccnvenient to
make use of the obvious property of the limiting concentrations to be a fized point
under the transformations (5} and (10).

Let us denote the lmit of each quantity with an index k by the same symbal but
without the index. Then the fundamental relations (5) and (10) vield

Dzl z P+ Elz}ulz}+ Flz]=0 (13)
ep{Fm I, 7P — el pz
alz]=pgq (l—pz F(lw-pz}z(l [p—})) (14)

where
Dlz]= =gz}
Efz]= Al{z] - 1+ Aslzin{gz]
Flz1= AJfz]+ Ai =} az).
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From (11) we get
%[0] = =[0]=0
x[1]=mfl]=1 (15)
R(m[1]+=«[i1]) =1

In relations {13) and (14) there are three unknown parameters: =1}, 2 p] and
xf p]. However, there exist two relations between these parameters:

7 [11=1+1/p+px[pl/q

s {16}
#'[pl=(1+p)1~=[p]D/{p*q)~1/p*.

To cbtain the first relation, it is sufficient to put z=1 1n (14} To dertve the second
relation, ane should differentiste expression {14}, put z=1 and use the first relation
of (16}

Thus, the above-mentioned three parameters depend only on one independent
parameter, e.g. [ p]. The othertwo parameters may be easily expressed in terms of [ p].

Relations (13) and {14} permit one to express (s) and »x(s) (s =1,2,...} in terms
of =[p] and #(o) (o=1,2,...,5—1). Thus, should »[p] be knowr, it would be
possible to find all the values of #(s) and x(s). Actually, the evalvation of #(s) and
x(s} {s=1,2, ..) can be made in the following way.

The obvicus inequality

™

5 x(@)p=alpl= 3 sapm+p(1- 5 ) a7

o=

o

together with the conditions #(s)=0, »(s)=0 (s=1,2,...) permits us to check each
trial velue of [ p] and thus to calculate :t to an arbitrary precision. To make the error
less than 1075, it is sufficient to take the parameter s in inequality {(17) in the range
20= 5 <30 (for different p-values) This being accomplished, it is easy to find the w(s)
and x{s) values for as many values of 5 as is necessary,

To find the probabilities p(s5) = Rwr(s) and ¢(s) = Rx(s), one neads to know the
R-value. This can be found by means of the third relation from set (13). To find =71,
which is mvolved in this relation, one may use relation (13}

—E[z]+(z - &)V jl 2]
2D z]

xlz]= (18)

where x[z]1=(z— &Yzl x[z1=E[zF¥—4D[z]F[z], €, s the zero of the function
X[ 2] of second muliplicity. The sign before the radical is cetermined by the condition
#[0]=0. As E[0] <D, the sign in formula (18) 1s 2 plus. After differentiating (18} and
putting z =1 we get a simple expression for »'[1] in terms of #{ pJ and #{g]. For these
quantities there exist fast converging series (2).

A less sophisticated way of evaluating »'[1] by using the series

Eal

#[i}= Y =is)s

s=1
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requires & much greater number of x(s) values to be computed, if good accuracy is
NECESsary.

6. The percolation threshold

For the model considered there exists a rather simple algonthm to evaluate the
percolation threshotd.

By definition (2), the functions n[z] and x[z] are analytical in the circle |z|=<1,
and the coefficients of their Maclaurin series are all positive. Therefore the functions
E[z], x[z1 and D[z] are analytical in the circle |z]<r (r=g '>1). Relation (18)
shows that the nearest singular point of the function =[z]1, say z,, is the branch point
and is simultaneously the zero of odd multiplicity of the function y[z]. By Pringsheim’s
theorem, the poini z lies on the positive semiaxis of the complex z-plans.

Let the p-value become less than the cnitical value. Then either z, becomes less
than unity, or some of the coeflicients «{s), »{s) become negative. In the last case we
shall say that the positivity condition is violated,.

Let us consider the first possibility, If the point z, =1 is a simple zero of the function
x[z], then the derivative »'[1] tends to infinity as the concentration p approaches the
critical value. In all other cases, 1t has a finite lumnit %'[1]. What is the physical meaning
of these two cases? From equalities (1), (2) and (3) one may deduce the sumpie relation

|
e (19)
#T1]-+71]

According to relation (16), the #T1] value is bounded to all g=¢ (> 0), Therefore,
»'[1]- o0 means that C -0, i.e. the concentration of active sites tends to zero when
the parameter p ends {0 ihe percolation threshold. If the point z,=1 is a non-simple
zero of odd multiplicity of the function x{z], then the concentration  tends to the
positive limit. In the first case, the transition from a percolation regime to z non-
percolation one is the second-order phase tramsition, and 1 the second case it is of
the first order.

In the model considered, the point z =1 15 a zeco of the function y[z] for all values
of p. The muitiplicity of this zero is no less than wwo, This excludes the first case, and
thus excludes the possibility of the second-order phase transition,

Tihe thresheid values of the concentration p may be celoulated from the condition
that the multiplicity of the point z =1 as zerc of the function y[z] is no less than three,
1.e. from the condition y"[1|=10. The algorithm of the previcus section permits us to
calculate the [ p] values for different values of p and thus to represent x"[1] as a
function of the parameter p only. The zero of this function lies in the interval
p.=0.652 77+ 107, the uncertainty 8p = 107° is due to the uncerfainty of the parameter
x[p].

The zero of ¥"[1] is the percolation threshold if the positivnity condition is fulfilled.
This cendition has been verified in the process of determining the value of %[ p] The
violation of the positivity coaditton pointed te inaccuracy of the trial value of s[ pl.
With each such step the number of positive coefficients w{s} and x{s) grew, and it
seems that this pumber can be made as large as vne wishes, if the choice of the x{ p]
value 15 good cnough. This shows that the positivity condition = weaker than the
condition x'[1]= 0. Thus the threshold value is determined by the condition ¥ T1]=0.
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7. Conclusion

The method of solving the directed percolation problem presented in this paper shows
good agreement with Monte Carlo calculations, except for a small region near the
percalation thresheld. No essential difficulties seem to appear in applying the method
to other directed percolation problems in plane crystals.

This paper contains an algorithm for step-by-step calculation of the concentrations
Pils) and g (s} in each layer. There are also algorthms for evaluation of the hmiting
concentrations p(s) and ¢(s), and also of the percolation threshold

It is shown tkat in the frame of the approximate model considersd the transition
through the percolation threshold is @ phase transitior of the first order. However, we
cannot be sure that this is the property of the real plane crystal and not a mere
consequence of the approximation we have made to construct the model considered
'The comparison with the data obtained by the Monte Carlo method shows (figure 1)
that if tn real crystals the discontinuity of concenirations does exist, it 1s smaller than
that obtained above

It may be noted that a more complicated case, where correlation exists in the
positions of open and closed sites, cant be investigated along the same lines if the sites
i question are neighbouts and belong to the same layer.
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Appendix

Here we give our method of reasoning that has led to relations (5) and (10).

Let us take a random set M of g sites i the (X+1)}th layer and calculate the
probability of its being a passive group.

We denote the two extreme siies of M by A_ and A, (A_ being the left site). The
two sites in the kth layer lying immediately under A_ and A, are designated as s:tes
A_and A, . We denote the left neighbour of the site A_by B_, and the right neighbour
of A. by B,. Let M_ be 2 group (active or passive) containing the site B, and M.
a group coniaining the site 8, . Teking intv account that the groups M. and M, may
be aciive or passive and may or may nof be identical, we get six different cases For
our purpose, it is sufficient to treat only one of these cases. We choose the case whers
the group R{_ is active and the group M, is passive. Lef m be the number of groups
lving bstween AM_ and M., and I, L, ..., I, be the lengihs of these groups. In the

-

case considered, the posstble values of m are even non-negative numbers (including
Zero).

) Let e (B_) be the number of the sites belonging to the set A7 and lying to the jeft
(right} of the site B_, let o, (8,) be the number of the sites of the set A, lying te
the right (left} of the site 5.. The set of numbers -

{au,ﬁ,~a+,5+,m,ll,lz, ‘-;im} (A})

gives a compleie description of the relevant part of the kih layer. The probability to



A calculable model of directed percolation 5423

meet just the configuration (A1) 1n the kth layer is equal to
Remla_+1+B Yo (I)m (L) ... m (L) (B +1+a,).

The set M is a passive group if and only if the following five conditions are fulfilled:

(I} ALl sites of M lying above active groups are closed. The probability of this
event is equal to g+t

(1i) The left neighbour of the site A_ belongs to an active group, The probability
of this event is p

(i} The right neighbour of the site A, belongs to an active group. The respective
probability is equal ta p*+**

(iv) The site A. must be closed. The probatility of this event is equal to

. _{1 if B_>0
T g if =0

YT

provided the first condition is fulfitied.
{v) The site A, must be closed. The corresponding probability is equal to
" _{1 ifB.=0,0rs5=1
" 4 if g, >0
provided conditions (1} and (1v) are fulfilled.
Using Kronechker's symbo]

5 _!’1 m=n
R mFn

we may represent the probzbilities w_ and w, in the form
w.=1—pdys
wo =1 =51 = 8p {1 —81,} =1—p(1—8¢p,)} +p&1,(1 — 5op.)
Now we can write down the coniribution w(s} of all configurations of the considered
type to the probabilitv g,.,{s):

]

wisi= % Y Remloe-+i+ B h(mdl)  welln)x{B.+1+ @)

a_ o =0 mpB_ 2.,
11,12- .

x g Pap® (1 — pligg J[1 = p(1- 8, (1~ B1c)] (A2)
{the inner sum s entended to the region: m=0,2,4,...; B_,B.=0,1,...;
hobs, oo by=1.2,..0y B+ B+ L+ h+. 1 =s).
Now ihe calculation of the generating function w[z]=327  z*w(s) is a rather
straighiforward operation because of the evident sua rule

X oo o0 (==}

= Z I X

L
5=0 Bo+Byth+ +ip=s pB_Bi=0 m=0 1, b=}

(m is even). To use this rule, we extend formally the relation (A2) to the value s =0,

w®=Rg 3 mla+1) ¥ sglar+1)p™" = Rep'grf p)
ox_=0

o, =0

and write

w[z]= ij 2°wils) = —w(0)+ f 2°wis)
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or

wizl=—w(0)+Rpz T p ¥ mla-t1+B)mdB.+1ta)g™

o= B-tA4i=1

X {1 —pSoﬁ_)(l - 60,5*) “+ R!_‘DS

x( 3 (e 1+ ) ga) (1~ p&m_))

B_=

X( E pu+xk(ﬁ.,,+l+a+)zﬁ+(q+pﬁep+))

oy, Be=0

o fa=)
L) ( z 2 T (e (B) - Mk(fm\i))
=034, Mb w1

K(f l § (2" T (b (L) . mc(lm))

odas =
The sum over h, ..., by is equal to {m [gz]}"/?, the sum over /,. ., [, is equal io
s [z]}™2. After summing over m we get
g g
1

1—s[z]mlgz]

The remaining three sums are readily found:

o
z OPa*ﬁ T omla-t i+ B )mBat 1+ e g (1~ pdop {1 Bop,)
ities Sl B =1

g T pemda+ e, +2) = gUul pl- % (1) p) p?

oy~

o me{x_+1 +£3-)(q2)3‘(1 -~ pbap.)

1
B

mla_+1+B Mg —p ;:O m (e +1)
0

a-=0

« v=1 ® 1-{gz)" 1—m gz
=3 m(y) L (gz)-p= m{}f)"-—(g—“ omlezl
7=t £=0 r=i 1-gz 1-gz
and similarly

= « wfz]—=,

L P *xk(ﬁ¢+1+a+):ﬁ*(q+p6w+)=q‘hu“7k£ﬂ"'“”k[p]-

e, B.=0 2 —

Thus. for the contribution wz] we get the following expression.
i- z
wlz}= Rkpz[—qm[p} +qz(o] pl-pra{ 1))+p(———~——-—w"[q N p)

1—gz
X(q"-‘k[z}"xktp]_,_

Sty

H
z=p [p ]) T—“?fk{zzmiqz}]‘

In the same way one can consider each of the remaining five cases and thus get
relation {53,
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The derivation of the second fundamental relation (10) does not take much time.
Indeed, the necessarv and sufficient set of conditions for the set M in the (k+1)th
layer to be active is the following:

(i) All sites, belonging to A4, are open and border on two closed sites. The
probability of this event is p°g”.

(ii) In the kth layer there is no passive group containing all sites lying under the
set M The probabihty of this event is

xn

1-R, Y wle +o.+s)

a_ . o.=0
Thus
pk+l(s)=q2p’(1—Rk y zk(ah+a++s)).
a_ =0

This relation readily leads to the second fundamental equation.
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